
Copyright © 2012 WhitePubs Enterprises, Inc.

Chapter 1

1 Computer-Aided Logic Design

1.1 Introduction

Hardware components of computers are physical models of logical reasoning. Procedures based on ligical disciplines
of mathematics are used to design these components1. Examples of such procedures will be presented here in the
form of APL programs intended to solve basic problems of computer logic design. 2

The three blocks of programs given here were used by the partticipants of the Short Course, Advanced Logical
Circuit Design Techniques, presented by UCLA Extension (March 1977). They are:

1. SYSTEM –

a. permits the transformation of a problem specification into a set of Boolean functions defined by a
truth table;

b. derives the Existence Function of the system;

c. and provides a tool

i. for minimization

ii. and for logical relation analysis.

2. OPTIMA – permits the optimal design of a two-level multiple-output combinational circuit based on a
rigorous mathematical principle.

3. BOOL – solves systems of Boolean equations of the general type; used for computer-aided design of
sequential circuits.

To use the programs effectively, it is necessary that one understand:

1. the general philosophy of problem specification and solution;

2. the programming symbolism; and the interpretation of the printout.

1.2 General Philosophy of Problem Specification and Solution

The following unified point of view is recommended for solving problems in logic design:

1. SPECIFICATIONS should be presented in propositional calculus, Boolean algebra, or in the algebra of sets
(classes);

2. EXECUTION of the solution procedure should be based on the algebra of sets (chart methods);

3. RESULTS are represented formally in Boolean algebra or by graphics.

The hardware design deals with physical phenomena related by a cause-effect relationship between states (events).
The state of a system can be described as a configuration of validities of propositions concerning measurable
quantities (i.e., voltages, currents, etc.).

1 Which led to the creation of RTL languages such a VHDL and Verilog, and the collapse of drawn schematics to create a design.
2 This should not be restricted to "computer" design – i.e., covers any logic design.

Chapter 1 Copyright © 2012 WhitePubs Enterprises, Inc.

2

EXAMPLE 1. For voltage measurement of terminals X1, X2, … , Xj, … we use Propositional Variables (x 1), (x 2),
… , (X j), … attached to the propositions describing the outcome of voltage measurement:

(X j) ≡ (Terminal XJ is HIGH) ≡ (Voltage at XJ is above 4.5V)3

(X j) ≡ (Terminal XJ is LOW) ≡ (Voltage at XJ is below 0.5V)

Note:

1. The existence of two thresholds and their separation

2. (X j) is a negation of (X j) so that

 [(X j) is TRUE] → [(X j) is FALSE] and visa versa;

3. The underlining of literals is used to express negation (complementation)

The transition of a system from one state to another will be described by two subsequent states. The first will be
called the cause of the state which follows it, which in turn will be called its effect.

Logical time will be defined later and the definition will be derived from the cause-effect relationship previously
mentioned.

A subsystem is a subset of variables of a system that possesses certain properties. For instance, input variables of a
combinational circuit have the property that they are mutually independent, and the output variables of the circuit
have the property that each one is a Boolean function of the input variables (exclusively). In this case, we have two
subsystems within a system. There may be more than two subsystems to consider when solving some problems of
circuit design.

The logical relation between subsystems belonging to a system will be explained here for two subsystems by the
use of Marquand Charts4 of Boolean Functions.

Example 2: Subsystem with X-variables: (X j); j = 1, 2, 3; and the subsystem with Y-variables: (Y k); k = 1, 2;
together these form a system. The validities of X-variables can take on eight different configurations; the validities of
Y-variables can take on four configurations. When there is no logical relation between the subsystems, each of the 32
validity configurations of all five variables of the system is equally possible. When the system obeys postulated
conditions (constraints), there will be a set of configurations (here from the set of 32) that will be ruled out (discarded).
The configurations that survive the process of elimination define the Existence Function of the system as a whole.

To describe the Marquand Chart suitable to explain the concept of logical relation, the configurations of validities of X-
and Y-variables are identified (labeled) by integers in the usual way. (See Figure 1-1 A Marquand Chart for a 5-
Variable System)

The eight possible configurations of validities of X-variables will be identified by the integer IX, where IX ε {0, 1, 2, 3,
4, 5, 6, 7} under the rule that IX, written as a three-bit binary number (x3, x2, x1)2, belongs to the configuration of
validities: (X 3) = x3, (X 2) = x2, (X 1) = x1. For instance, IX = 3 = (011)2 stands for (X 3) = 0 (false) and (X 2) = (X
1) = 1 (true).

The Marquand Chart for the system of our example is shown in Figure 1-1. The horizontal scale of the chart belongs
to the subsystem X: (X j); j = 1, 2, 3; NX = 3. The columns are labeled in IX from left to right, IX = 0, 1, 2, 3, 4, 5, 6, 7;
the number of columns (total number of validity configurations) is designated by NNX, NNX = 8. The vertical scale of
the charts belongs to the subsystem Y: (Y k); k = 1, 2; NY = 2, NNY = 4 (number of rows). The rows are labeled in IY
= 0, 1, 2, 3.

3 5V system
4 1880 mathematical paper by Marquand introduced the mapping that predates the Karnough map

Computer-Aided Logic Design

Copyright © 2012 WhitePubs Enterprises, Inc.
3

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

IX = 0 1 2 3 4 5 6 7

(Y 1) = 1IY = 0

 1

 2

 3

(y2, y1)

(X 1) = 1
(X 2) = 1
(X 3) = 1

Figure 1-1 A Marquand Chart for a 5-Variable System
Marquand conceived his chart in the binary way (in agreement wit the labeleing practices of today). Written as binary
numbers, the identifiers IX, IY produce the variables' validity configuration (Y2, Y1, X3, X2, X1) of all five variables of
the system. The identifier of that configuration IS = (y2 y1 x3 x2 x1)2 = 8 x IY + IX. Each window in Figure 1-1 is
labeled with the corresponding value of IS.

IS = (1 1 1 1 1)2 = 31, while IS = (0 0 0 0 0)2 = 0, and IS = (0 1 1 1 1)2 = 15

The values of IS follow each other in a natural way. This rule holds true for a Marquand Chart pf any dimension and
any shape. The logical distance of a pair of windows on the chart is the sum of the disagreements in bits of their
binary identifiers, IS. Two windows that are at the logical distance of one unit possess identifier IS values that differ
by 2k (where k is an integer), thus implying that two windows that are at the logical distance of one unit must fall both
in the same row or both in the same column.

Finally, the binary background of the chart leads to the following simple rule: If a Marquand Chart of any size or
shape is divided into vertical bands of equal width 2k+1, then any two windows within the same band possessing the
horizontal distance of 2k (half of band) have a logical distance of one unit. The same rule holds for division into
horizontal bands of the equal width, 2k+1., Any two windows in the vertical distance of 2k (both being in the same
column, of course) that fall in the same horizontal band, have the logical distance of one unit.

Example 3: Four vertical bands in Figure 1-1 have the width 21 = 2 windows. For that reason, any two windows at the
horizontal distance of 20 (1 window) falling in the same band have the logical distance of one unit; for instance, pairs
of windows labeled in IS: (0, 1), (12, 13), (26, 27). But pair (21, 22) which has a horizontal distance of one window, is
composed of elements that do fall in the same band; their logical distance is not equal to one unit. Horizontal band
division with band width 2 shows that (21, 29) are windows of logical distance of one unit, but that windows (10, 18)
are not. Vertical band division with band width 4 indicates that (17, 19) are at logical distance of one unit and the (19,
21) are not.

Returning back to the logical relation between subsystems, four examples are offered. (See Figure 1-2)

Example 4. Figure 1-2a shows the Existence Function of a system whose subsystems X, Y are completely
independent. The system X ∪ Y is without constraints. The chart is filled with "1"s to express that every possible
validity configuration exists.

Example 5. Figure 1-2b shows the Existence Function of a system subjected to some constraints. In general, a given
Existence Function can belong to many different sets of constraints. We will mention the most obvious:

1. For IX € {2, 3, 4, 5, 6}, the value of IY is uniquely determined. In other words, IY is a function of IX within
that domain.

2. For IX = 1, it is IY = 1 XOR 2 (exclusive OR).

In another form

 (IX = 1) → (Y2 ≠ Y1)

3. For IX = 0, it is IY = (any). In other words,

 (IX = 0) → (any one from all)
 (don't care which IY)

Chapter 1 Copyright © 2012 WhitePubs Enterprises, Inc.

4

4. The input configuration belonging to IX = 7 is forbidden as the circuit has no steady-state for X3 = X2 = X1.

5.

Figure 1-2 Examples of Existence Functions

Example 6: Figure 1-2c shows the Existence Function of the full adder (Figure 1-3). It is a combinational circuit: A
definite output signal configuration belongs to any input signal configuration. In other words, the chart of the
Existence Function must have exactly one non-zero in each column. In another form, IY = f(IX). We say that the
subsystem Y is a function of the subsystem X. Symbolically, IX -> IY. The constraint for the full adder, written in APL,
is:

 ((Y 1) + 2x(Y 2)) = (X 3) + (X 2) + (X 1) (1.1)

The equation means that the sum ∑j (X j) (count of HIGHs at the input of the full adder) is equal to the binary number
(y2 y1)2 (represented in HIGHs at the outputs.

Full AdderX3

X2

X1

Y2

Y1

Figure 1-3 A Combinational Circuit
It is important to point out that Figure 1-2c is the chart of the Existence Function of the full adder and not the truth
table of functions generated by the full adder. The relation between the Existence Function and the truth table is very
simple:

1. The Existence Function can be replaced by a truth table uniquely if and only if each column of the
(normalized) chart of the Existence Function contains exactly one non-zero.

2. The truth table function ((Y k) = 1) -> (Z k) can be deciphered from the Existence Function by reading IX
values for which (Y k) = 1.

To get the truth table of the full adder from its Existence Function in Figure 1-2c, we start with (Y 1) = 1 to get (Z 1).
Configurations with (Y 1) = 1 are all on the rows IY € {1, 3},a and the Existence Function indicates that only four
cases exist with IX € {1, 2, 4, 7}, so that (Z 1) ≡ (0110 1001). Similarly, (Y 2) = 1 is true only for configurations in
rows IY € {2, 3}. The Existence Function indicates four cases: IX € {3, 5, 6, 7}, so (Z 2) ≡ (0001 01111).

The complete truth table (presented horizontally, as by the APL programs) is shown in Figure 1-5.

Computer-Aided Logic Design

Copyright © 2012 WhitePubs Enterprises, Inc.
5

 (X 1) ≡ 0 1 0 1 0 1 0 1

(X 2) ≡ 0 0 1 1 0 0 1 1

(X 3) ≡ 0 0 0 0 1 1 1 1

(Z 1) ≡ 0 1 1 0 1 0 0 1

(Z 2) ≡ 0 0 0 1 0 1 1 1

Figure 1-4 Truth Table of Full Adder

Example 7: Figure 1-2d shows the Existence Function of a NOR flip-flop with a reset terminal, X3. The conventional
diagram of this flip-flop is shown in Figure 1-5. The corresponding system is composed of the input subsystem (X j); j
= 1, 2, 3, and the output subsystem (Y k); k = 1, 2. The diagram in Figure 1-5 was postulated as the only constraint
of the system. The equations of the circuit, written in APL,

((Y 2) = (Y 1) ^ (X 1)) ^ ((Y 1) = (Y 2) ^ (X 2) ^ (X 3))

are satisfied for validity configurations corresponding to windows where the Existence Function (Figure 1-2d) is true.

(X 3)

(X 2)

(X 1)

(Y 1)

(Y 2)

Figure 1-5 NOR Flip-Flop with Reset
 The circuit properties can be derived from that function:

1. It is clear that the Existence Function in Figure 1-2d cannot be replaced by a truth table because not every
column contains exactly one nonzero (see column IX = 0). Thus, the circuit is not combinational but rather
sequential (containing feed-backs).

2. There are exactly nine steady states: Two for IX = 0 and one for each IX € {1, 2, 3, 4, 5, 6, 7}.

3. When (X 3) = 1 (reset signal HIGH), then IX € {4, 5, 6, 7}. All four existing validity configurations for that
domain (right-hand half of the chart) have (Y 1) = 0 in common. That means that X3 -> Y1, independent of
anything else.

4. When (X j) = 0 for all j, then IX = 0 and the circuit can be either of two steady states: IX € {1, 2}, in which
case (Y 2) ≠ (Y 1).

5. (Refer to Figure 1-6) Starting with the steady state: IS = 16, the change of X1 alone (IX = 0→1, Column IX =
1) produces the unstable state: IS = 17, which goes over to the steady state: IS = 9. The change of X2 alone
(IX = 0 →2, column IX = 2) produces the unstable state: IS = 10, which goes over to the stable state: IS =
18.

A change of X2 alone (IX = 2 → 0) enforces the steady state: IS = 16. Flip-flop transition is thus illustrated.

Chapter 1 Copyright © 2012 WhitePubs Enterprises, Inc.

6

	
IS Y2 Y1 X3 X2 X1

16 1 0 0 0 0

17 1 0 0 0 1

9 0 1 0 0 1

9 0 1 0 0 1

8 0 1 0 0 0

8 0 1 0 0 0

10 0 1 0 1 0

18 1 0 0 1 0

18 0 0 1 0

16 1 0 0 0 0

 Figure 1-6 State Transaction for Flip-Flop of Figure 1-5
The reader is now invited to go to Chapter 2, which illustrates the use of the program SYSTEM to specify Boolean
functions either by the procedure SPACE (Existence Function development) or by the procedure TABLE, producing a
truth table of functions, either from their sufficient functions or by listing).

The library program SYSTEM has two groups of procedures. The first prepares truth tables or Existence Functions
(discriminants) of a system subjected to a set of constraints. The second group contains important design procedures
for the special treatment of Boolean functions such as charting, minimization of ∑∏ and ∏∑ forms, listing prime
implicants, and evaluation of the Boolean difference. Some of the algorithms used in the APL programs differ from
those found in teaching texts --- the triadic ordering of implicants, minimization by extension of a ∑∏ form, and
multiple-output design optimization based on S-minimization of a mosaic Boolean function are mentioned to name he
most important. Explanations of these algorithms will be given in he second section of this text, and logical
instruments will be offered there as efficient means of teaching the basic concepts.

The library program BOOL solves systems of Boolean equations of a general type by enumeration. The procedure is
entered by calling BILL, and the equations are entered by calling FORMULA. The first literals of the alphabet
represent the Boolean constants (for instance: A, b, c, D), and the literals that follow them in their natural sequence
represent the unknowns (for instance: E, F). The values 0 (false) and 1 (true) may be used (alone!) on the right-hand
side of the formula only. The sum of products form must be used on both sides of the formula. Only two relations
between the sides are accepted by the programs, EQUIVALENCE (=) and IMPLICATION (→) (the APL right-arrow).
Underlining may be used to represent negation.

 Example 8. Examples of correctly-composed formulas (It does not matter how many variables are constants and
how many are unknowns):

 CA + BD = AB + CDA

 ACD + B = 0

 ED +ED = 1

 ABD -> CE

 DC + CA -> E +BA

 EDCB -> A + B + D

Note: Spaces within a product or around the signs are acceptable. The sign “+” means OR; the sign “->” means
“implies”.

